P = 371.20 watt
Q = P*tan φ = 371.20*0.6/0.8 = 278.40 Var
A = √P^2+Q^2 = √371.20^2+ 278.40 = 464.00 Va
I = A/V = 464/116 = 4.00 A
R = P/I^2 = 371.20/16 = 23.20 ohm
X = Q/I^2 = 278.40/16 = 17.40 ohm
L = X/(2*PI*f) = 17.40/(6.2832*60) = 0.04615 H (46.15 mH)
additional question: What additional inductance should be inserted in series in the circuit of the problem above if the overall power-factor is to be reduced to 0.5? what will be the current and power under this condition?
sin φ1 = √1-0.5^2 = √0.75 = √3/2
tan φ1 = sin φ1/cos φ1 = √3/2*2 = √3
X1 = R*tan φ = 23.20*√3 = 40.1836 ohm
ΔX = X1-X = 40.1836-17.40 = 22.7836 ohm
ΔL = ΔX/(2*PI*f) = 22.7836/(6.2832*60) = 0.06044 H (60.44 mH)
I1 = V/Z1 = 116/√R^2+X1^2 = 116/√23.20^2+40.1836^2 = 2.500 A
P1 = R*I1^2 = 23.20*2.5^2 = 145.00 watt
A1 = Z1*I1^2 = √23.20^2+40.1836^2 *6.25 = 290.00 Va
cos φ1 = P1/A1 = 145.00/290.00 = 0.50 ...verified !!!!!